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LETTER TO THE EDITOR

Topological properties of linked disclinations and dislocations
in solid continua

A Holz

Fachrichtung Theoretische Physik, Universitiit des Saarlandes, 6600 Saarbriicken, Federal
Republic of Germany

Recetved 4 Jnne 1991

Abstract. Linked disclinations in three-dimensional solid continua are studied via the
Wess-Zumino term and related topological concepts for the transformation group GL*(3, R}
and its quotient spaces GL*(3, R/P,(3) and SO(3)/P,{3) where P;(3) represents point
symmetry groups of anisotropic solids. The telation with the topological properties of
anisotropic liquids is indicated. Dislocations are treated as ‘dipotar’ pairs of disclination
loops and alternatively using Kroner's approach of material connections. Linking of
dislocations is studied via the Hopf invariant and Gauss linking number, and a connection
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In the following we consider crystalline systems perforated by defects like dislocations,
disclinations and point defects in a 3-space M approximated as a continuum (Kréner
1980). These defects play an important role in the elastic and plastic properties of a
solid; in particular, the entanglement of dislocations ( Holz 1985} and their deformations
under plastic flow have some features in common with polymer entanglement in melts.
Furthermore, line defects play an important role in the theory of melting in anisotropic
and in supercooled liquids (Holz 1991). There also exists a relation between line defects
in three-dimensional solids and (2 + 1)-dimensional gravity (Holz 1988). In the follow-
ing, some of these phenomena will be studied from a topological perspective, and
brought into connection with newer work on (2+ t)-dimensional Chern-Simons gauge
theory of gravity, Ashtekar’s (1986) new variables, and knot polynomials.
For the defect-free state we take the Euclidean metric

dS% =8, dx' dx’ i=1,2,3. (1)
The defect state is described by the vector-valued 1-forms ©° = R} dx* (the 3-bein
e, =(R¥)), where (R{)e GL*(3,R) is a 3 X 3-matrix field with det R> 0, and the metric

ds®=5,0°0" = g, (x) dx* dx" (2)
The distance change

ds?=dsd = (gu— 8x) dx* dx' = 2¢;, dx* dx'

defines the strain tensor € (e.g. see Kroner 1980); summation convention is implied
throughout. Use of the linear algebraic group GL*(3, R) as the structure group for the
gauge group %(3), consisting of all maps M - GL*(3, R), has been suggested by Madore
(1981). For the sake of simplicity we use initially a closed and simply connected 3-space
M, in order to avoid the specification of boundry conditions. Extension to non-simply
connected spaces will be pointed out later.

0305-4470/92/010001 + 10%03.5¢ (© 1992 IOP Publishing Ltd L1
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Suppose that R € 9(3); then the respective Mauer-Cartan form is given by
R dR=~-RYdRIT: = wi, dx*T! (3)

where T; represents one of the nine generators of the Lie algebra gl(3, R) and the
symbols w§ =~ represent the spin connection of a flat space M. The generators
of gl(3, R) obey

[Ts, Tal= C(e,f)(asb)(c,d)-r{ - 4)

where C{5{) .4, are the structure constants of gl(3, R) with respect to pairs of indices
in the canonical fashion (Miller 1972).

The connection defined by (3) is that of a flat space. Non-flat connections will be
represented in the form

©=wiT, (5}
and their curvature 2-form by

R =R;T, (6a)
where

R =1R%, dx* adx' (6b)

R =diowoiy — g ip + 0k~ @0 4. (6¢)

Here we use the notation 8, = 3/9x*, and follow the conventions of Eguchi et al (1980)
for the curvature tensor and topological invariants studied in the following, with the
exception of their normalization. The Chern-Simons term is of the form

ch=%J’ tr(wrdo+ieo /o s w) (7a)
(817') M

where the trace is performed by contracting the matrix indices of (R)}, etc, and a
normalization is chosen, which is appropriate for the following purposes. Equivalent
forms of I'cg are

r

I‘cs=——(8;)zj [wf A do’+308 h 0l wf] (7b)
M
1 i} a o a
__32172[ djx‘EJk[Rbikwﬁz_i_%wibwkcw;’a] (7c)
M

where £ is the totally antisymmetric symbol.
The Wess-Zumino term for a flat connection is

1 [ €
sz=—2§?JM 0l Aol (8)

For a closed manifold M and for a gauge transformation R € %(3), (7c) changes by
(8), when computed with (3).

Suppose now that we restrict R € G1*(3, R) to the subgroup SO(3) =« GL(3, R). Then
in (3) only the generators of the SO(3) algebra survive and we have

0l=w? dx" >0 =0%dx" 9
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where {©°},_, ,; are the connection 1-forms of the SO(3) gauge group %o(s), Which
has been studied recently (Holz 1991). Using the representation R=R(nr', n*, n’), where
{n®},.,25 is a 3-bein of orthonormal fields in (9), I'y; can be computed for Re
Gson = G(3) with 'y € Z. Furthermore, Iy can be expressed in terms of the Hopf
invariants, respectively Gauss linking numbers of the components of the 3-bein field
{n“},.123, which measure the linking of the disclinations suspended by these com-
ponents (Holz 1991). For (9) one obtains, for example, Teg=Twz=3 2., Q(n*)=AN€
Z, and Q(n°)= AN /2 is the Hopf invariant of the {n“} field, which is the same for each
component of the 3-bein. Due to 7,(SO(3}}=7Z, there is only one type of stable
disclination {e.g. see Kléman 1983) but, due to m(S0{3))=2, linked configurations
of any disclinations are topologically stable. In particular, for smooth 3-bein fields
one necessarily needs & e 2Z. Identifying the 3-bein field with the crystalline 3-bein,
i.e. an orthonormal set of local lattice planes, makes it obvious how to extend the
results obtained for anisotropic liquids (Holz 1991) to anisotropic solids, including
the cases where SO(3) is replaced by SO(3)/P,(3) and P,{3) is a crystalline point
symmetry group.

The result ['cs=I'wz holds only for flat connections, whereas the result I'yz=
IXl_,Q(n")=2Q(n"),a=1,2,3is a consequence of the orthonormality of the 3-bein
field. For instance, if the configuration of one field, say {n'}, is given then Q(n')
represents the Gauss linking of the respective disclinations. The second field {n°} due
to orthonormality is also characterized by Q(n'}, but has an additional degree of
freedom with respect to {n'} and may therefore be considered as a scalar field of an
0(2)- model on a ‘curved background’. Due to O(2) ~ 8" and m,(§') =2, (7,.,(8") =
0) additional defects in the form of vortex loops featuring core singularities are possible
for fixed {n'}. Core singularities, however, imply a non-flat connection and I'cg # Ty
is obtained in that case. The third field {r’} is fixed by {n'} and {n®},i.e. it is characterized
by Q(a') and the core singularities of {#*}. Similar arguments apply when the {n'}
field also features core singularities. The details are worked out in Holz (1991).

Anobvious shortcoming of the model discussed above is that the structure generated
by the gauge group %so;) will not fit easily into a given 3-space M, e.g. M =§" In
order to work out the physical significance of such a theory, and in particular to

understand which processes are responsible for the change dl'cs/dt = 0, some addi-
|nn al fnrrnnllcrn hac tn he rpr‘n"nﬂ (eop anr‘n et n.’ 19800

tional formalism has {o be recalled (see Eguchi 1930).
The Hirzebruch-Pontryagin density is given by
*RR=3e""PR,, . RG=03,X" (10)
and yields the instanton number
1
=-——| d'x*RR 11
n 2m J’ (11)

form for which (7a) is obtained as I'cs=—(1/3277%) I d*xX3. Here M, can be taken
in simple cases as the cylinder M, = M x R, and requires that the formalism developed
so far is extended to (3+1)-dimensional spacetime. This is easily done replacing the
Euclidean metric by the Minkowski metric

6[}'_)1);4.11 (""’ V)=0! 1!2!3 PN
6ab—)nab (a; b)=0! 1!2’3 e

and
GL(3,R)»GL{4,R) SO(3)=80(3, 1). (13)
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When (5) represents a Riemann connection the curvature tensor satisfies the
symmetries R,,,.. = R(,..1,00= Rizo1..1 and allows the representation

0 - E.oﬂ',x - Ew.y - Epﬂ.z
E.. 0 B.,. —B
(R:£)= P, o, poy (14)
Epcr,y "Bp«r.z 0 Bacr.x
Epo: Bpa,y - pr.x 0
and a similar representation for its dual *R. Insertion into (11) yields
n= 1 I d4x E, . -B™ (15)
3271'2 M, il '

Suppose now that 7 is computed with respect to M,, bounded by two space-like
surfaces M(r,} and M(1), ie. aMy=M(1,)u —M(t,) with t,>> ¢, then n(M,)=
Tes(M (1)) —Tcs{M(1,)) and, accordingly,

dlcs (M(8)) - 1
dt 3272

I E,-B” &x. (16)
(M (1)

Another topological invariant for a Riemann connection is the Euler characteristic,
which can be represented in the form

- ”
I
X(M4)=4’IT2 JM d“x v—E8 (Epo'.Epa_Bpa"Bpa) (17)

where g =det(g,,) and
gﬂ.v = nabR:Rﬁ- (18)

Equation (17) represents the Yang-Mills action of the curved space M.
A defect solid may now be represented by a Riemann connection computed
from (18),

| =%878{3a883 + 30850 ~¥58ap) (19a)
which has vanishing torsion
Tis=3(Tls—T}.)=0. (198)

Suppose that Re SO(3, 1) and that {R} is a smooth field. In that case g,, = 7., and
I'l,=0, implying a flat manifold M,. For the spin connection (3} one obtains

0% = RIRITA, +R%,R;=R%,R;. (20)

This yields I'cs{w) =Cyz{w) and T'yz counts the winding number of the SO(3,1)
transformation associated with the map M —»S0(3,1}). For ReS0(3)=S0(3,1},
I'wz(w) applies to links of integer-valued disclinations. The derivation of (20) from
(19a) implies that the spin connections (3) and (9), according to {195), are torsioniess.
From the remarks below (9), it follows then that there exist smooth crystalline 3-bein
fields in the form of linked disclinations without need of dislocations (elastic deforma-
tions are discussed below).

For Re S0(3, 1), T'w2{ @) represents a three-dimensional integral in six-dimensional
group space. Due to I'Z; =0, R,4,;=0 and (16) implies

dlMyz(w) _
P (21)
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From this it follows that formation of links and their disentanglement implies formation
of singularities in the form that necessarily R2S0(3, 1), and g, # 7,., and a non-flat
connection arises,

The usual case in solid state physics will be that Re GL*(3,R) and Re GL(4, R)
for the time-independent and time-dependent cases, respectively. Due to GL"(n,R)=
SO(n)xS(n), where S(n) is the coset space of positive definite symmetric matrices
(Bott and Tu 1982}, the structure group of GL™(3, R) bundles can be reduced to SO(3).
Furthermore, {R} will contain singularities along the cores of disclinations, because
the orientational order parameter of a crystalline solid assumes values in the quotient
space SO(3)/P(3), whose fundamental group =,(SO(3}/P;(3)) = m,(P¥(3)) is non-
trivial. Here P} is the binary group to P;(ord P#(3) =2 ord P.(3)). Due to =, (PF(3))# I
there exist non-contractible loops in M implying line singularities in the R-field. The
latter will give a contribution 8'cs to s as explained by Helz (1991) for the
SO(3)/P:{3)— o model. 8¢5 can be expressed in terms of Gauss linking numbers,
and I'cg can be computed via I'¥s going over to the space M*, which is branched over
the disclination loops and which has no singularities but 7r;,{ M*) # I. Similar reasoning
can be applied to the quotient spaces GL*(3, R)/P;(3) or SL(3)/P.:(3).

Consider now a gauge transformation ®& %(3) with ®: R- R’. For the time-
independent case this amounts to an (adiabatic) elastic deformation of the defect solid.
® produces a change of frame ®: ¢, > ¢4 = e,,tbﬁ’(' and a change of the spin connection
(in matrix notation)

b w->R=Pd '+ddP" (22)
Equation {22) inserted into (7b} yields
®: T'es(w) > Tes(2)

1
=Teglw)—— j tr(@ ! dd)* + J‘ tr{ew A ddd™"), (23)
487 M anM

1672
This is modulo a factor } (present normalization), the same formula as derived by
Dijkgraaf and Witten (1990). In the presence of singular disclinations, M represents
two-sided cut surfaces bounded by disclination loops and therefore the last term in
(23) is not gauge invariant. However, if we go over to the covering space M™* then
aM* = ¢ and the last term in {23) drops out. Because & is supposed to be elastic in
nature, i.e. it represents a small gauge transformation, the Wess-Zumino term in (23)
with respect to M* will vanish. This follows from (16) and dI'cs/df =0 for smooth
motions and no transection of disclinations. Accordingly we have I'fg(Q) =T¥(w)
and I'¥5(Q) € Z, for R € Y503 and for smooth deformations R R’ with R'e GL*(3, R)
and R'e ¥4(3).

We consider next the problem of how to represent dislocations in this formalism.
There exist at least three possibilities.

(i} The first approach is based on the Euclidean group E® =SO(D}x T, (Kadié
and Edelen 1983), where T, is the Abelian group of translations. SO(D) can also be
replaced by SO(D —1, 1) for relativistic problems. For D =3 the gencrators of the Lie
algebra of E®’ in the represenation (3) are of the form

[Tav Tb]zaabcTc [Ta:Pb]zsabL‘Pc [Puapb]=0 (24)

where {T,},=1::€SO(3)and {P,}._; 23 € t:. For SO(3) > SO(2, 1), raising and lowering
of indices in (24) has to be done by 7,,. Witten’s (1988) approach to topological
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gravity is based on this representation and (7a) (and an unfaithful representation of
S0O(2, 1) x T; as shown by Gerbert (1990})}, using an associative and invariant trace
operation different from the one used in (7b) and (7¢). This approach can also be
applied to the present formulation for the group E® using in (3) Re GL(4, R)|»
(restricted to the subgroup E‘ < GL(4,R)) in the form

G ¢

a-(¢ 9 -
with G € SO(3) and g € T}, modulo the space symmetry group of the lattice P,{3) x T,(3),
where T,(3) in the translational symmetry group. For the connection between the

Chern-Simons action and Palatini action we refer to Ashtekar and Romano (1989).
(ii) In the second approach one stays with the time-independent problem with the
Lie group GL*(3,R) or its subgroup SL(3,R), which is volume preserving. The Lie
algebra sl{3, R) is a real representation of the Lie algebra su(3) and is of rank two,
i.e. it has a two-dimensional maximally commutative subalgebra, consisting of

anisotropic dilatations and compressions (Miller 1972). For the following, the three
(planar) subgroups of GL™(3,R), being of the type

H.E{(‘:I ?)CSL(3,R)} (26)

are of interest, where H e SL(Q, R) and te T, (H; and H, refer to the other planes in
R?®). The elements h, € H, for H € SO(2) = SL(2, R) are in 1-1 relation with the elements
ec E® using the unfaithful representation (25) for two dimensions. Employing the
gauge group #, based on the structure group H, allows the formation of composite
disclinations, which are of edge and screw types, as explained by Holz (1988).

Consider a typical element h, of (26) close to a composite disclination of edge and
screw types,

in a mlana £ marmandisralar ta ite cnaes nnsnting alano a cummatery avie In camnlay
111 a pldllb . }Jblpbllulbulal LU ILe LUl L PUIIILIIIE alUllE a J)'llllll\’ll GALDY il \-Ulllpl\-l\
coordinates wc C we obtain for a core location ae C
ge 1
0.="arg(w—a) O,=—gq,arg(w—a). (28)
Pe 2w

Here p, = ord(P.) represents the order of the symmetry axis P, € P;(3) the disclination
is associated with {e.g. p.=2, 3 and 4 in the octahedral group O}, and (q., ¢.) € Z. This
implies that (27) for (28) is the nucleus of a local representative of #,(P,} (which may
be subject to affine deformations) with structure group H,(P,) obtained from (26) by
the replacements SL(2, R) - SL(2,R)/ P., T, » T,/ T., where T, is the discrete transla-
tion group of the crystal along P.. For dipolar pairs of disclinations one uses

9.

Pe

[T, L R T Y _
FelW)— Lalp\w — Uy

nralw o 31
atgyw =d_j}

@

(29)
O, (w) ='-211r- g larg{w—a,)—arg(w—a.}].
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For (a,—a_) of the order of the lattice distance, the composite object represents a
dislocation of mixed edge and screw types, with components b~
2sin[(g./p.)m)la; —a_|, and b, ~ g,|a, —a_| for in and out of plane components of the
Burgers vector, respectively, and |g./ p| < 3. The topological formalism used earlier can
now be applied to this problem by decomposing I'cs in terms of edge- and screw-type
line defects.

(iii) An alternative approach to defect solids {e.g. see Kroner 1980) is to use instead
of (19) the material connection

I?,= R53,R%. (30)

This connection is metric with respect to (18), i.e. Vg,, =0 but has torsion T}, =
T2, -I%,) for non-integrable Re GL*(3,R) or GL(4,R). It is therefore essentially
different from the spin connection (3}, and (20), which is torsionless. Observe, however,
that in approach (i) based on (25), (6a) can be decomposed into the curvature and
torsion 2-forms of the three-dimensional problem {Gerbert 1990). Torsion is connected
with the dislocation density. For smooth R-fields the curvature of I vanishes, whereas
singularities in the R-field imply curvature and the pres¢nce of disclinations.

Some topological properties of (30} wili be studied in the following using the
A-connection (Holz 1991)

I%.{A)=-AR%5, RS (31)
and its curvature
R, (A)==2A(1+A)a, T2 (—1)+ 227 R44,,. RS (32)

where d(,.,1=13(3,.. — 3.,.), etc. With respect to (18) one obtains V,.(A)g,, ={1+1)3.8...,
implying that, for A # —1 {flat connection), I'},(A) in general is non-meiric, except for
=4,, and 7,,, respectively. However, because n

S22 s

L
............ -
defined by (10) is also a topological invariant for general affine connection this is of

no significance. The spin connection to (31) is
wha(A)=(1+A)R03, R, (31)

and a simple computation yields
1
Fes(A) =2 L Ex P {—(1+1)%3,R}9,R:+(1+A)[1+3(1+1))3,R}8,RE R, RI}.

Due to (31) I'cs(~1)}=0; whereas ignoring the first term of I'cg(A) one obtains for
A = -2 the Wess-Zumino term, i.e.

1
48 7*

Tes(—2)=Twz=- [ d*x E""’wﬁa(*2)w31-(“2)wfb(-2)- (33)
Use of Re SO(3) allows study of the topological properties of dislocation fields within
the framework of the recently developed theory for the SO(3) — o model. However,
the replacement R— R’ € GL(3, R) in (31') does not amount to a gauge transformation
of T'cs(A) for A= -2; therefore, d'cs(—2}/dt# 0 for smooth deformations R= R’
Accordingly, 'y 2 Z for Re GL(3, R) or SL(3,R).

Finally, we study the linking of individual dislocation loops. The closure failure
of a connection I' may be represented in the form

J- 8x"=—-J. T+, [d*x]*" (34)
3D D



L8 Letter to the Editor

where D is a two-dimensional oriented disc and 4D its boundary. The relation
T4, = —at, connects torsion and dislocation density (Krdner 1980). Setting

AP = 8x* = §x* dx” F*m=—{T%, dx° ndx”
Stokes’ theorem applied to (34) yields
Ft, =V, AL~V A, (35)

where V is the covariant derivative with respect to I'(—1), given by (31). Obviously, A
and F are the gauge potential and field strength, respectively, of the spacetime transla-
tions of the lattice. .

Recall now that on a flat space M, with torsion there exist four linearly independent
parallel fields, which may be represented in the form

v" =R} b=0,1,2,3. (36)

Accordingly, we may use a mixed representation of (35), i.e. F5, =V,AL -V Al and
where the covariant derivative with respect to the upper index b is trivial, because of
I':,=0, as follows from (31"). Now we may define the Hopf invariants corresponding
ta the four Abelian generators of spacetime translations:

i

(8w)?

p
Q° = J d*x eP ALV A" a=0,1,2,3. (37)
M
In order to compute Q°, (35) has to be solved in terms of A, which is a non-trivial
problem for the connection I'(—1). In the following we compute @ in the simplest
approximation V,-3,. Defining the fields E“ and B’ according to (14) one obtains
in Cartesian coordinates

N

B'(x)=-47 ¥ bfj dx; 8% (x—x,) (38)
= c

in the presence of N dislocation loops {C,} with Burgers vector {b; = b}, b;} and where
the time-like component is supposed to vanish. The burgers vector b labels the
representations of the group T,® T,/ T,(3), where T,(3) is the translational symmetry
group of the lattice. Use of (38} and its vector potential in Q° yields

Qa=Lzb?b;J' J. dx,-xdxj-(x'__xj)
c, C;

i<y |"‘i—-“j|3

and

3 1 dx; xdx;- (x; — x;}

S} oebyan [ St -
Q a2=:1 Q 8 igj ! Tl o |-‘.“-‘tj|3

This implies that knottedness and linking of disclination loops can be represented in

terms of the Gauss linking number. Similarly as in Holz (1991), one obtains

d___2 .| axee (40)
dt = @ ™ ]
from which it follows that a change of Q in time is related to crossing processes of
dislocation loops. Framing of the loop C; (Witten 1989) can be done using the Burgers
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vector b;. Non-trivial framing may arise if Q“ is computed according to (37) using V
instead of 4.

In conclusion, we have studied some topological aspects of linked disclinations
and dislocations in solids. In particular, it has been shown that there exist linked,
coreless and torsionless disclinations, which are topologically stable. A Hopf link or
torus knot of such disclinations after suitable deformation may be viewed as a coreless
‘dislocation’ with non-trivial framing. From a mathematical point of view this result
is, of course, trivial because there exists an infinite number of Hopf fibrations of the
3-sphere 87 due to 7,(§%)=Z. The present theory may also be extended to non-
simply connected 3-manifolds M, realized in R’ by suitable boundary conditions on
the order parameter (e.g. for the 3-torus by means of periodic or twisted boundary
conditions). Entanglement effects of line defects in the 3-space M are also of interest
for (2+1)-dimensional melting (Holz 1985) and gravity (Holz, 1988) in the case where
M admits a suitable foliation by 2-surfaces. Chern-Simons gauge theories (Witten
1988, Ashtekar and Romano 1989) for the two systems may also have some properties
in common, besides that in the simplest case the Euclidean group is matched to the
Poincaré group. From the perspective of the present work a gauge theory of the
(2+1)-dimensional melting problem should be based on SL(3,R) or one of its sub-
groups. Progress in the problem also requires a study of two-dimensional melting
within conformal field theory.

The present studies are essentially based on tlat connections. Singular defects have
a non-vanishing field strength tensor with support at their core and therefore may be
used to define no-flat connection. In that case one must introduce continuous distribu-
tions of singular disclinations and study the problem on a scale which does not resolve
individual disclination cores. This may imply that knot polynomials as computed within
the topological field theory of Witten (1989) may also be studied by the present methods.
In order to approach this problem it is quite conceivable that Ashtekar’s (1986) new
variables are useful, in a form designed by Rovelli and Smolin (1990). These authors
introduce a tower of observables which is based on the holonomy of Ashtekar’s
connection A around a given lgop ¥ in the form

T{(y)=Tr chp(§ A).

The loop spaces they introduce are generalizations of the usual knot and link classes,
including loop intersection, overlap and kink. Considering the loop spaces formed
from disclinations it is suggestive that the set of observables {T"},., ..« introduced
by Rovelli and Smolin (1990} may also be used for the complete description of solid
state phenomena. However, instead of the SO(3) gauge group its complex version
SL(2, C)}/Z, must be used for the construction of A and a suitable Hamiltonian must
be introduced governing the dynamics of the system. Although a quantum theory of
defect states may have some significance for solids consisting of helium or neutrons,
there exist some essential differences with respect to quantum gravity. In particular,
solid states are not subject to a diffeomorphism constraint due to the existence of
elasticity (phonons are a consequence of breaking of diffeomorphism invariance);
however, this may be avoided by going over to liquid crystalline or simply isotropic

liquids (see also Holz 1988).

The author acknowledges fruitful discussions with S Kohler and thanks the referee
for pointing out Ashtekar’s works.
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