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LEITER TO THE EDITOR 

Topological properties of linked disclinations and dislocations 
in solid continua 

A Holz 
Fachriehtung Theoretische Physik, UnivenitHt des Saarlandes, 6600 Saarbriicken, Federal 
Repilblic of Germany 

Received 4 lime 1991 

Abstract. Linked disclinations in three-dimensional solid continua are studied via the 
Wess-Zuminotermand related topological conceptsforthetransformationgroupCL'(3, R) 
and its quotient spaces GL+(3, R/P,(3) and S0(3)/Pi(3) where Pi(,) represents point 
symmetry groups of anisotropic solids. The relation with the topological properties of 
anisotropic liquids is indicated. Dislocations are treated as 'dipolar' pain of disdination 
loops and altematively using Krijner's approach of material connenions. Linking of 
dislocations is studied via the Hopf invariant and Gauss linking number, and a connection 
wlrn rrsmerar s new vanao,rr IS poercru ""I. 
~ ~ ~ . _ . ~  . ~ . ~ _ ~ . ~ - - . ~  ~ ~ ~ ~ ~ ~ ~ ~ ~ - I - L . - -  :~ --: ~ . - >  ~~~. 

In the following we consider crystalline systems perforated by defects like dislocations, 
disclinations and point defects in a 3-space M approximated as a continuum (Kroner 
1980). These defects play an important role in the elastic and plastic properties of a 
solid; in particular, the entanglement of dislocations (Holz 1985) and their deformations 
under plastic flow have some features in common with polymer entanglement in melts. 
Furthermore, line defects play an important role in the theory of melting in anisotropic 
and in supercooled liquids (Holz 1991). There also exists a relation between line defects 
in three-dimensional solids and (2+ 1)-dimensional gravity (Holz 1988). In the follow- 
ing, some of these phenomena will be studied from a topological perspective, and 
brought into connection with newer work on (2+ 1)-dimensional Chem-Simons gauge 
theory of gravity, Ashtekar's (i986j new variabies, and h o t  poiynomiais. 

For the defect-free state we take the Euclidean metric 

dS& = 8, dx' d d  i =  1,2,3. (1) 

The defect state is described by the vector-valued 1-forms 0" = RC dx' (the 3-bein 
e , , = ( R ~ ) ) , w h e r e ( R ~ ) E G L t ( 3 , R )  isa3x3-matnxfieldwithdet R>O,andthemetric 

ds2=8abOLl@b=g'l(x) dx* dx'. (2) 
The distance change 

ds2-ds&=(gk,-&,) dx' dx '=2E~Idxkdxf  

defines the strain tensor E (e.g. see Kroner 1980); summation convention is implied 
throughout. Use of the linear algebraic group GL'(3, R)  as the structure group for the 
gauge group 5?(3), consisting of ail maps A4 + GL'(3, R), has been suggested by Madore 
(1981). For the sake of simplicity we use initially a closed and simply connected 3-space 
M, in order to avoid the specification of boundry conditions. Extension to non-simply 
connected spaces will he pointed out later. 
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Suppose that R E  9?(3); then the respective Mauer-Cartan form is given by 

R- ' .dR= -Rf:dR!TI:-w&,dxkT! (3) 
where T; represents one of the nine generators of the Lie algebra gl(3, R) and the 
symbols w;6 = -uka represent the spin connection of a Rat space M The generators 
of gl(3,R) obey 

[T;, E1 = C(,da,b)(c,d)T! (4) 

where C{:,&,d) are the structure constants of gl(3, R) with respect to pairs of indices 
in the canonical fashion (Miller 1972). 

The connection defined by (3) is that of a flat space. Non-Rat connections will be 
represented in the form 

(5 )  w =WET. h 

and their curvature 2-form by 

3 = R;T: (60) 

R; =iRtk1 d x k  hdx '  (66) 

REk, = -8,WEh + w;cw;h - 6J;CW;h. (6c) 

Here we use the notation d k  d / d x k ,  and follow the conventions of Eguchi er al( l980)  
for the curvature tensor and topological invariants studied in the following, with the 
exception of their normalization. The Chem-Simons term is of the form 

where 

where the trace is performed by contracting the matrix indices of (R);, etc, and a 
normalization is chosen, which is appropriate for the following purposes. Equivalent 
forms of Tcs are 

(76) 
i r  

(BT) M 
r c s = y  J [ W E  A d w ~ + f w ~ A w : A w ~ ]  

where eBk is the totally antisymmetric symbol. 
The Wess-Zumino term for a flat connection is 

For a closed manifold M and for a gauge transformation R E  9?(3), (7c) changes by 
(B), when computed with (3). 

Suppose now that we restrict R E  G1+(3, R) to the subgroup SO(3) c GL(3, W). Then 
in (3) only the generators of the SO(3) algebra survive and we have 

(9) o ; = o b d x k + @ O '  =@> dx k 
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where {@a}, ,=, .2,3 are the connection 1-forms of the SO(3) gauge group 9sso(31, which 
has been studied recently (Holz 1991). Using the representation R = R(n', nz ,  n3), where 

is a 3-bein of orthonormal fields in (9), rwz can be computed for R E  
9sso~31~ 9(3) with I',,eZ. Furthermore, Twz can be expressed in terms of the Hopf 
invariants, respectively Gauss linking numbers of the components of the 3-bein field 
(na}a= l ,2 ,3 ,  which measure the linking of the disclinations suspended by these com- 
ponents (Holz 1991). For(9) oneobtains, forexample,Tcs=rw,=3~:=,  Q ( n ' ) = N E  
E ,  and Q(na) = N / 2  is the Hopf invariant of the {n") field, which is the same for each 
component of the 3-bein. Due to a,(S0(3))=B2 there is only one type of stable 
disclination (e.g. see Kleman 1983) but, due to ?r3(S0(3)) =Z,  linked configurations 
of any disclinations are topologically stable. In particular, for smooth 3-bein fields 
one necessarily needs # E  2Z. Identifying the 3-bein field with the crystalline 3-bein, 
i.e. an orthonormal set of local lattice planes, makes it obvious how to extend the 
results obtained for anisotropic liquids (Holz 1991) to anisotropic solids, including 
the cases where SO(3) is replaced by S0(3)/Pi(3) and Pj(3) is a crystalline point 
symmetry group. 

The result Tcs = Twz holds only for flat connections, whereas the result Twz= 
fZi=, Q(na)=2Q(n") ,a=l ,2 ,3  is aconsequence oftheorthonormalityofthe3-bein 
field. For instance, if the configuration of one field, say { n ' } ,  is given then Q ( n ' )  
represents the Gauss linking of the respective disclinations. The second field {n'} due 
to orthonormality is also characterized by Q ( n ' ) ,  but has an additional degree of 
freedom with respect to In ' )  and may therefore be considered as a scalar field of an 
0(2)-u model on a 'curved background'. Due to O(2) - S' and ?r,(S') = B, (vqp2(S1) = 
0) additional defects in the form of vortex loops featuring core singularities are possible 
for fixed { n ' } .  Core singularities, however, imply a non-flat connection and Tcs # Twz 
isobtainedin thatcase.The thirdfield{n'}isfixed by(nl}and {n2},i.e.it ischaracterized 
by Q ( n ' )  and the core singularities of In2} .  Similar arguments apply when the ( n ' }  
field also features core singularities. The details are worked out in Holz (1991). 

An obvious shortcoming of the model discussed above is that the structure generated 
by the gauge group 9sso(31 will not fit easily into a given 3-space M, e.g. M = S3. In 
order to work out the physical significance of such a theory, and in particular to 
understand which processes are responsible for the change dTcs/dt # 0, some addi- 
tin-r! Fn-n!isrr! has !e be reca!!ed (see Eg"chi et n! 1980). 

The Hirzebruch-Pontryagin density is given by 

~ u o X >  = a,xP (10) *RR = f E w = P ~  

and yields the instanton number 

~=-s[ 1 d4x*RR 

M A  

form for which (7a)  is obtained as Tcs= -(1/32?r2) I, d'xX'. Here M4 can be taken 
in simple cases as the cylinder M4 = M x R, and requires that the formalism developed 
so far is extended to (3+ 1)-dimensional spacetime. This is easily done replacing the 
Euclidean metric by the Idinkowski metric 

6, + %" 

6.b -f 7.b 

(P ,  v )  = 0,1,2,3 

(a ,  b)=O,  1,2,3 
i i i j  

and 

GL(3, R) -f GL(4, R) S0(3)+S0(3, 1). 



L4 Letter to the Editor 

When ( 5 )  represents a Riemann connection the curvature tensor satisfies the 
symmetries R,, = &rul[ml = and allows the representation 

and a similar representation for its dual *R Insertion into (11) yields 

Suppose now that 7 is computed with respect to M4, bounded by two space-like 
surfaces M ( f J  and M ( f , ) ,  i.e. dM4=M(f2)u -M(t,) with f 2 > f , ,  then q(M4)= 
TcS(M( r2)) -T,,(M( f l ) )  and, accordingly, 

Another topological invariant for a Riemann connection is the Euler characteristic, 
which can be represented in the form 

where g =det(g,,) and 

g,,= 7 d : R k  (18) 

A defect solid may now be represented by a Riemann connection computed 
Equation (17) represents the Yang-Mills action of the curved space M.,. 

from (IS), 

r:, =fgy8(a,g,, +doga, -dag.,) (190) 

T : , ~  f(r :9 - r;m) = 0. (196) 

Suppose that R E  SO(3, I )  and that {R} is a smooth field. In that case g,. = vru and 
I':, = 0, implying a Bat manifold Ma. For the spin connection (3) one obtains 

which has vanishing torsion 

o ; = R ~ R ; ; T ~ , + R ~ a , R ~ = R ~ d , R ~ .  (20) 

This yields Tcs(co)=I'wz(co) and Twz counts the winding number of the SO(3, l )  
transformation associated with the map M + SO(3, 1) .  For R E  SO(3) c SO(3, l ) ,  
Twz(w) applies to links of integer-valued disclinations. The derivation of (20) from 
(190) implies that the spin connections (3) and (9). according to (196). are tonionless. 
From the remarks below (9 ) ,  it follows then that there exist smooth crystalline 3-bein 
fields in the form of linked disclinations without need of dislocations (elastic deforma- 
tions are discussed below). 

For R E SO(3, l) ,  Twz(o) represents a three-dimensional integral in six-dimensional 
group space. Due to T&=O, RaBrs-O and (16) implies 
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From this it follows that formation of links and their disentanglement implies formation 
of singularities in the form that necessarily RS SO(3, I ) ,  and g,, # q,,,,, and a non-flat 
connection arises. 

The usual case in solid state physics will be that R E  GL+(3, W) and R E  GL(4, W) 
for the time-independent and time-dependent cases, respectively. Due to GLt( n, W) = 
S O ( n ) X S ( n ) ,  where S(n) is the coset space of positive definite symmetric matrices 
(Bott and Tu 19821, the structure group of GL+(3, R) bundles can be reduced to SO(3). 
Furthermore, {RI  will contain singularities along the cores of disclinations, because 
the orientational order parameter of a crystalline solid assumes values in the quotient 
space SO(3)/P3(3), whose fundamental group ?r,(S0(3)/P,(3)) = ?rl(P?(3)) is non- 
trivial. Here P: is the binary group to P,(ord PT(3) = 2 ord P,(3)). Due to rI(P?(3)) # I 
there exist non-contractible loops in M implying line singularities in the R-field. The 
latter will give a contribution 6rc, to rCs as explained by Holz (1991) for the 
S0(3)/P8(3)-u model. ST,, can be expressed in terms of Gauss linking numbers, 
and rCs can be computed via r& going over to the space M * ,  which is branched over 
the disclination loops and which has no singularities but ?rl( M * )  # I. Similar reasoning 
can be applied to the quotient spaces GL'(3, W)/P,(3) or SL(3)/P,(3). 

Consider now a gauge transformation @ E  g(3) with @: R +  R'. For the time- 
independent case this amounts to an (adiabatic) elastic deformation of the defect solid. 
@ produces a change of frame @: e. + eA = e,,@:--' and a change of the spin connection 
(in matrix notation) 

@: w + = @wCP-l+'D d W ' .  (22) 

Equation (22) inserted into (76) yields 

@: rcs(o)+rCsw 

This is modulo a factor f (present normalization), the same formula as derived by 
Dijkgraaf and Witten (1990). In the presence of singular disclinations, JM represents 
two-sided cut surfaces bounded by disclination loops and therefore the last term in 
(23) is not gauge invariant. However; if we go over to the covering space M* then 
dM* = + and the last term in (23) drops out. Because @ is supposed to he elastic in 
nature, i.e. it represents a small gauge transformation, the Wess-Zumino term in (23) 
with respect to M* will vanish. This follows from (16) and dr,,/dt = 0 for smooth 
motions and no transection of disclinations. Accordingly we have r&(n) = r&( o) 
and r&(n) E d, for R E %ssoc3, and for smooth deformations R +  R' with R'E GL'(3, W) 
and R'E g(3) .  

We consider next the problem of how to represent dislocations in this formalism. 
There exist at least three possibilities. 

(i) The first approach is based on the Euclidean group EcD'  = SO(D) x U,, (Kadii: 
and Edelen 1983). where 8 ,  is the Abelian group of translations. S O ( D )  can also be 
replaced by SO(D - 1, 1) for relativistic problems. For D = 3 the generators of the Lie 
algebra of .Ec3' in the represenation (3) are of the form 

[ r e ,  T b l = E a b c T c  [ Ta, p b l  = E d x P '  [P", Pol = 0 (24) 

where(T.].E,Z,3~S0(3)and{P.}.=,,,~,~ t,. ForS0(3)+S0(2,  I ) ,  raisingandlowering 
of indices in (24) has to be done by qrv.  Witten's (1988) approach to topological 
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gravity is based on this representation and (7a )  (and an unfaithful representation of 
SO(2, 1) x TI as shown by Gerbert (1990)), using an associative and invariant trace 
operation different from the one used in (76) and (7c) .  This approach can also be 
applied to the present formulation for the group E") using in (3) R E  GL(4, W)IEii i  

(restricted to the subgroup E"'c GL(4, W)) in the form 

withGESO(3) andqE T,,moduIothespacesymmetrygroupofthelattice P,(3)xTi(3), 
where Tj(3) in the translational symmetry group. For the connection between the 
Chern-Simons action and Palatini action we refer to Ashtekar and Romano (1989). 

(ii) In the second approach one stays with the time-independent problem with the 
Lie group GL+(3, W) or its subgroup SL(3, W), which is volume preserving. The Lie 
algebra sI(3, W )  is a real representation of the Lie algebra su(3) and is of rank two, 
i.e. it has a two-dimensional maximally commutative subalgebra, consisting of 
anisotropic dilatations and compressions (Miller 1972). For the following, the three 
(planar) subgroups of GLt(3,W), being of the type 

are of interest, where H E  SL(2, W) and f E T2 ( H2 and H ,  refer to the other planes in 
RI).  The elements h,  E H, for H E SO(2) c SL(2, R) are in 1-1 relation with the elements 
e E E"' using the unfaithful representation ( 2 5 )  for two dimensions. Employing the 
gauge group X, based on the structure group H, allows the formation of composite 
disclinations, which are of edge and screw types, as explained by Holz (1988). 

Consider a typical element h ,  of (26) close to a composite disclination of edge and 
screw types, 

cos@, -sin@, 

... ;,, a p!ane c pe7pendicu!a: :o i:s c=:e pointing a!ong a ; y E x "  axis. !E co--p!er, 

(28) 

coordinates w c C we obtain for a core location a E C 

1 e,=- q. arg(w - a ) .  9. 0. =- arg( w -a) P. 2lI 

Here p. = ord(PJ represents the order of the symmetry axis Pee P,(3) the disclination 
is associated with (e.g. p.= 2,3 and 4 in  the octahedral group 0). and (qe ,  qJ E Z. This 
implies that (27) for ( 2 8 )  is the nucleus of a local representative of X,( P,) (which may 
be subject to affine deformations) with structure group H,(P,) obtained from (26) by 
the replacements SL(2,W)+SL(2,W)/PC, T2+ T2 /Tc ,  where T, is the discrete transla- 
tion group of the crystal along P.. For dipolar pairs of disclinations one uses 
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For (o+-a-)  of the order of the lattice distance, the composite object represents a 
dislocation of mixed edge and screw types, with components b,- 
2 sin[(q,/p.)~r]la+ - a-1, and b, - qJa, - (1-1 for in and o u t  of plane components of the 
Burgers vector, respectively, and 1qJp.I G i. The topological formalism used earlier can 
now be applied to this problem by decomposing Tcs in terms of edge- and screw-type 
line defects. 

(iii) An alternative approach to defect solids (e.g. see Kroner 1980) is to use instead 
of (19) the material connection 

r:, = R:a,R :. (30) 

This connection is metric with respect to (18), i.e. Vg,,=O but has torsion T:,= 
f(T:,-TP,) for non-integrable R E  GL+(3, W) or GL(4, a). It is therefore essentially 
different from the spin connection (3), and (ZO),  which is torsionless. Observe, however, 
that in approach (i) based on (25), (6a )  can be decomposed into the curvature and 
torsion 2-forms of the three-dimensional problem (Gerbert 1990). Torsion is connected 
with the dislocation density. For smooth R-fields the curvature of T vanishes, whereas 
singularities in the R-field imply curvature and the presence of disclinations. 

Some topological properties of (30) will be studied in the following using the 
A-connection (Holz 1991) 

rc,(A) = -ARza,R: (31) 

R&(A) = -2A(1 +A)dlrT~1~(- l )+2A’R:J, , , ,R~ (32) 

and its curvature 

whereaI,,lEf(ap.,-C)u,). etc. With respect to (18) one obtains V,(A)g, ,=( l+A)J,g, , . ,  
implying that, for A # -1 (flat connection), re.(.\) in general is non-metric, except for 
R E  SO(?) and SO!?, !), where gF. = 8,” and rerpec!ive!y, However? because 7 
defined by (IO)  is also a topological invariant for general affine connection this is of 
no significance. The spin connection to (31) is 

(31‘) o, . (A)=(l+A)Rb,a,R: h 

and a simple computation yields 

rCS(A) =s 
Due to (31’) Tcs(-l)=O; whereas ignoring the first term of T,,(A) one obtains for 
A = -2 the Wess-Zumino term, i.e. 

1 d3~ePqr{-(1 +A)’a,,R&,R:+( 1 +A)’[ 1 +f ( l+  A)]a,R&R;R:R:). 

Use of R E SO(3) allows study of the topological properties of dislocation fields within 
the framework of the recently developed theory for the SO(3) - U  model. However, 
the replacement R +  R’eGL(3, IR) in (31’) does not amount to a gauge transformation 
of rcS(A) for A = -2; therefore, drCs( -2)/dt # 0 for smooth deformations R + R’. 
Accordingly, Twz@H for R E  GL(3, IR) or SL(3, W). 

Finally, we study the linking o f  individual dislocation loops. The closure failure 
of a connection T may be represented in the form 
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where D is a two-dimensional oriented disc and JD its boundary. The relation 
TFr = -aFw connects torsion and dislocation density (Kroner 1980). Setting 

A'= ax'= Sxz dxP FLm -4T;- dxP n dx" 

Stokes' theorem applied to (34) yields 

FL=V,AE-VJ; (35) 

where V is the covariant derivative with respect to r ( - l ) ,  given by (31). Obviously, A 
and F are the gauge potential and field strength, respectively, of the spacetime transla- 
tions of the lattice. 

Recall now that on a flat space M4 with torsion there exist four linearly independent 
parallel fields, which may be represented in the form 

07 = RX b = 0, 1, 2 ,3 .  (36) 

Accordingly, we may use a mixed representation of ( 3 9 ,  i.e. F:,=Vfi6-V,& and 
where the covariant derivative with respect to the upper index b is trivial, because of 
rZb=O, as follows from (31'). Now we may define the Hopf invariants corresponding 
to the four Abelian generators of spacetime translations: 

Q" = -- I I d'x&"'A;V,A: a =0, 1 ,2 ,3 .  
(8r)* M 

(37) 

In order to compute Q", (35) has to be solved in terms of A, which is a non-trivial 
problem for the connection r(-l). In the following we compute Q" in the simplest 
approximation Vu+Jv.  Defining the fields E" and Bh according to (14) one obtains 
in Cartesian coordinates 

N 

B " ( x ) = - ~ T  by dxjS'"(x-x,) (38) 

in the presence of N dislocation loops (C,} with Burgers vector {b: = b9, b;} and where 
the time-like component is supposed to vanish. The burgers vector b labels the 
representations of the group T.0 T,/Ti(3), where TJ3) is the translational symmetry 
group of the lattice. Use of (38) and its vector potential in Q" yields 

i = ,  l,< 

1 dx, x dx, . (x, - xJ)  

c, Ix, - 4 3  
Q" =- brb," J, 

87r ,<J 

and 

This implies that knottedness and linking of disclination loops can be represented in 
terms of the Gauss linking number. Similarly as in Holz (1991), one obtains 

(40) 

from which it follows that a change of Q in time is related to crossing processes of 
dislocation loops. Framing of the loop Cj (Witten 1989) can be done using the Burgers 
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vector bi. Non-trivial framing may arise if Q" is computed according to (37) using V 
instead of J. 

In conclusion, we have studied some topological aspects of linked disclinations 
and dislocations in solids. In particular, it has been shown that there exist linked, 
coreless and torsionless disclinations, which are topologically stable. A Hopf link or 
torus knot of such disclinations after suitable deformation may be viewed as a coreless 
'dislocation' with non-trivial framing. From a mathematical point of view this result 
is, of coursei trivial because there exists an infinite number of Hopf fihratinns of the 
3-sphere S' due to ?r,(S2)=Z. The present theory may also be extended to non- 
simply connected 3-manifolds M, realized in R' by suitable boundary conditions on 
the order parameter (e.g. for the 3-torus by means of periodic or twisted boundary 
conditions). Entanglement effects of line defects in the 3-space M are also of interest 
for (2+l)-dimensional melting (Holz 1985) and gravity (Holz, 1988) in the case where 
M admits a suitable foliation by 2-surfaces. Chern-Simons gauge theories (Witten 
1988, Ashtekar and Romano 1989) for the two systems may also have some properties 
in common, besides that in the simplest case the Euclidean group is matched to the 
Poincart group. From the perspective of the present work a gauge theory of the 
(2+1)-dimensional melting problem should be based on SL(3,R) or one of its sub- 
groups. Progress in the problem also requires a study of two-dimensional melting 
within conformal field theory. 

The present studies are essentially based on Hat connections. Singular defects have 
a non-vanishing field strength tensor with support at their core and therefore may be 
used to define no-flat connection. In that case one must introduce continuous distribu- 
tions of singular disclinations and study the problem on a scale which does not resolve 
individual disclination cores. This may imply that knot polynomials as computed within 
the topological field theory of Witten (1989) may also be studied by the present methods. 
In order to approach this problem it is quite conceivable that Ashtekar's (1986) new 
variables are useful, in a form designed by Rovelli and Smolin (1990). These authors 
introduce a tower of observables which is based on the holonomy of Ashtekar's 
connection A around a given loop y in the form 

T(  y )  = Tr P exp( f7 A). 

The loop spaces they introduce are generalizations of the usual knot and link classes, 
including loop intersection, overlap and kink. Considering the loop spaces formed 
from disclinations it is suggestive that the set of observables IT"}.=,, introduced 
by Rovelli and Smolin (1990) may also be used for the complete description of solid 
state phenomena. However, instead of the SO(3) gauge group its complex version 
SL(2, C)/Z, must be used for the construction of A and a suitable Hamiltonian must 
be introduced governing the dynamics of the system. Although a quantum theory of 
defect states may have some significance for solids consisting of helium or neutrons, 
there exist some essential differences with respect to quantum gravity. In particular, 
solid states are not subject to a diffeomorphism constraint due to the existence of 
elasticity (phonons are a consequence of breaking of diffeomorphism invariance); 
however, this may be avoided by going over to liquid crystalline or simply isotropic 
liquids (see also Holz 1988). 

The author acknowledges fruitful discussions with S Kohler and thanks the referee 
for pointing out Ashtekar's works. 
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